div#ContactForm1 { display: none !important; }
Hyper Smash

Wednesday, October 1, 2008


Wednesday, September 17, 2008

NeuroMonitoring in Epilepsy Related Diseases & Surgeries!?.

JNSJournal of Neurosurgical Focus
In the latest issue of the journal JNS, Scellig S. D. Stone, M.D., and James T. Rutka from The Hospital for Sick Children, and The University of Toronto, Ontario, Canada discuss issues relate to the topic "challenges in Epilepsy related diseases and neurosurgeries in epilepsy patients". 
These challenges can provide great opportunities for neuromonitoring, infact, in this very review you will find that the existing brain mapping and EcoG has been a gold standard to conduct successeful neurosurgeries, it has become an important tool for surgeons to identify and map the areas in epilepsy patients who undergo surgeries to get rid of the epileptic loci in the brain.
The authors described two combined approach that can be used to delineate a possible trajectory for the epilepsy surgeons, such methods may help to relieve the patients from epileptic activities. 

The neuronavigation system and the neuromonitoring approach, I will try to condense the information regarding neuromonitoring here, but one must read the whole article to get a better insight into this field. Three of the exisiting neuromonitoring protocols are discussed,
1.Electrocorticography recording method, using this method one can reliably map the brain areas of interest for surgical removal by directly placing grid electrodes on the surface of brain (invasive), using the method poineered by the Penfield and Jasper [34.Jasper HElectrocorticographyPenfield WJasper HEpilepsy and the Functional Anatomy of the Human Brain BostonLittle Brown1954692738].
2.Depth Electrode Recordings, this method can be combined with the direct mapping of the brain using depth electrode, deep isertion of electrodes into subcortical areas will provide additional information about ictical and interactive epileptic regions, in reality, the DER can be performed outside the OR perioperatively as well as inside the OR intraoperatively, enabling the surgeon to develop a streamlined strategy into the brain area of interest to be lesioned, lesioning brain areas is the surgical procedures carried out to eliminate epileptic activities.
3.Intraoperative EcoG is  yet another recording used widely to operate on interactive epileptic patients, the most important use of EcoG seems to be to during extralesional resections or lesionectomy combined with spike-positive tissue resection procedures. EcoG monitoring seems to have helped reduce the rate of second surgical procedure and reduced epileptic activities significantly in those patients. One of the surgical procedure where EcoG was very useful in the removal of the hippocampal area or mesial temporal or gliosis surgical procedures.
4.Direct Cortical Stimulation method, mostly used in surgeries that involve sensory motor or language areas, a direct application of focal cortical pulses of low voltage current using a hand held bipolar electrode.
So, applying these
techniques in combination as a "multi-model" neuromonitoring procedure
can go long way in safegurding better surgical procedures in epilepsy patients. This is a great review any neurophysiologist or neurosurgeon or neurologist or neuromonitoring personnel must read for better understanding of surgical procedures and neuromonitoring in epilepsy patients.

Sunday, September 14, 2008

Ulnar Neuropathy? If the surgery site is lower Lumosacral level, why should you monitor upper limp SSEPs?

This article in the latest Spine Journal (an electronic publication) demonstrates that upper limp SSEP monitoring is quite handy in detecting ulnar nerve neuropathy during lower back surgeries??.

PubMed-NCBI Spine J. 2008 Aug 4. [Epub ahead of print]Click here to read Upper-limb somatosensory evoked potential monitoring in lumbosacral spine surgery: a prognostic marker for position-related ulnar nerve injury.

BACKGROUND CONTEXT: Somatosensory evoked potential (SSEP) is used to monitor integrity of the brain, spinal cord, and nerve roots during spinal surgery. It records the electrical potentials from the scalp after electrical stimulation of the peripheral nerves of the upper or lower limbs. The standard monitoring modality in lumbosacral spine surgery includes lower-limb SSEP and electromyography (EMG). Upper-limb SSEP monitoring has also been used to detect and prevent brachial plexopathy and peripheral nerve injury in thoracic and lumbosacral spine surgeries. We routinely monitor lower-limb SSEP and EMG in lumbosacral spine procedures at our institution. However, a few patients experienced postoperative numbness and/or pain in their ulnar distribution with uneventful lower-limb SSEP and EMG.

Friday, September 5, 2008

Neuromonitoring Signal Changes during Spinal Epidural Hematoma?

A&AInternational Anesthesia Research Society
oh yes, 
there are few non-surgically induced damages that might go unnoticed in the absence of intraoperative neuromonitoring such as ischaemia, hematoma, stroke and so on...?.
 The following work demonstrates the timely detection of epidural hematoma by neurophysiological wave form changes.
the disappearance of evoked potentials and the subsequent appearance of paraplegia in our patient was unlikely to be caused by the epidural LA, but probably by the occurrence of the spinal epidural hematoma as a complication of epidural catheterization.

Acute spinal cord dysfunction was revealed by INM, then elucidated by imaging of the spine. The whole sequence of events led to timely urgent neurosurgical intervention which resulted in complete restoration of motor and sensory functions.

Our patient’s case supports the value of evoked-potential monitoring during spinal surgery.
This case and previous work offer arguments that evoked potentials are relatively insensitive to epidural LAs, but nevertheless we suggest that neuraxial LAs better be avoided in cases in which INM is used.

Friday, August 15, 2008

Anesthesia and Neuromonitoring by Reza Gorji, MD

Reza Gorji from University of NY writes at the Neuroanesthesia.net about various neuromonitoring methods and the effect of anesthesia, what types of anesthetic agent is advisable for certain types of EPs and EEGs during surgical procedures.

Anesthesia and Neuromonitoring: Electroencephalography and Evoked Potentials Reza Gorji, MD, Department of Anesthesiology, University Hospital, State University of NY, Syracuse, NY

  • Anesthesia and Neuromonitoring (EEG & EP) Patients undergoing neurologic/orthopedic procedures involving the peripheral and central nervous system may be at increased risk from hypoxia/ischemia to vital neurologic structures. Intraoperative neuromonitoring may improve patient outcome by:

a. Allowing early detection of ischemia/hypoxia before irreversible damageoccurs

b. Indicating the need for operative intervention (shunts placed in carotid surgery) to minimize nerve damage The role of anesthesiology in neuromonitoring is one of understanding the appropriate anesthetic techniques, applying knowledge of medicine, surgery, physiology and pharmacology to get the best possible outcome.
This monograph will discuss the
various clinically important neuromonitors and offer solutions as they apply to clinical anesthesia.
It is divided in 3 broad sections: Electroencephalography, sensory evoked potentials and motor evoked potentials.

Tuesday, July 29, 2008

Nerve Conduction Study & Needle Electromyography

Nerve Conduction Technology News:- NeuroMetrix completes CE Technical File and Achieves CE Marking for its ADVANCE(TM) System allowing Marketing in the European Union
Last update: 7:30 a.m. EDT July 29, 2008
WALTHAM, Mass., Jul 29, 2008 (BUSINESS WIRE) -- NeuroMetrix, Inc. (NURO:
neurometrix inc com
1.39, -0.02, -1.4%)
today announced that it has completed the CE technical file for its ADVANCE System ("ADVANCE"). With this regulatory step, NeuroMetrix intends to begin marketing ADVANCE to neurologists, clinical neurophysiologists, hand surgeons, and other specialists in the EU.
ADVANCE is a comprehensive platform for the performance of traditional nerve conduction studies and needle electromyography procedures. The technical specifications include a precision electrical stimulator and dual recording channels for acquiring nerve conduction responses. A third channel is available for recording needle electromyography signals. ADVANCE introduces several important technological improvements.
SOURCE: NeuroMetrix, Inc.
NeuroMetrix, Inc.
Jessica Borchetta, 781-314-2725
Administrative Assistant

Friday, July 18, 2008

65,000 Peers, Doctors Online Network!

BUSINESS AMNews articles linked to Sermo's online physician forum

Doctors can join 30,000??? (it is 65,000 now!) peers to comment on stories and initiate discussions.

By AMNews staff. Oct. 15, 2007.

Doctors now can share their views on American Medical News articles with thousands of their colleagues on Sermo, an online community for physicians only.
Current and recent articles in the American Medical News online edition -- amednews.com -- carry links that instantly connect readers to the free Sermo site (www.sermo.com). Established Sermo member physicians then need only log in. First-time physician users can access the Sermo community after a simple registration procedure, taking about two minutes, that includes verification of their MD or DO degree.

Thursday, June 12, 2008

Spinal cord tumor removal & Neuromonitoring

Spinal cord tumor resection can pose serious risks of
induced sensory or motor deficits, intraoperative neuromonitoring
combined sensory and motor pathways can be useful to prevent potential
damages. Here are some collective articles related to spinal cord tumor resection.


Spinal Cord integerity risk & Tibial single Trial SSEP?

Single trial Tibial Somatosensory SSEP along with H-reflex can be used to monitor the spinal cord integerity and function during surgical procedures that put the cord in risk. The following article
describes how this combination of a single trial SSEP can be

When spinal cord functional integrity is at risk during surgery, intraoperative neuromonitoring is recommended.

Tibial Single Trial Somatosensory Evoked Potentials (SEPs) and H-reflex are here used in a combined neuromonitoring method: both signals monitor the spinal cord status, though involving different nervous pathways.
However, SEPs express a trial-to-trial variability that is difficult to track because of the intrinsic low signal-to-noise ratio. For this reason single trial techniques are needed to extract SEPs from the background EEG.

Wednesday, May 21, 2008

4th and 5th Cervical Laminae-Acute Hemiparesis?

This interesting article published in the "Journal of Bone and Joint Surgery" describes spinal cord injuries at the C4-C5 level caused by a serious head-on vehicle collision in a 18 year old teenager. The accident resulted in invagination of C4-C5 laminae into the spinal canal and also fractures leading to hemiparesis?. Surgical intervention of laminectomy, fusion and stabilization with instrumentation resulted in recovery from right sided weakness and recovery of full neurological functions.

Traumatic invagination of the fourth and fifth cervical laminae with acute hemiparesis
U. R. Hähnle, L. Nainkin
From the University of the Witwatersrand, Johannesburg, South Africa

The patient was initially treated by skeletal traction (3 kg) applied using
Crutchfield tongs. As the neurological deficit did not recover
during the following week operation was undertaken.
Through a posterior approach, exposing the laminae and
lateral masses from C3 to C6, the invagination of the right
laminae of the C4 and the C5 vertebrae was confirmed. All
other posterior elements such as the facet joints, ligamentum
flavum, interspinous ligaments and spinous processes
were intact. The fracture at C2 was not exposed.
Reduction of the invaginated laminae was achieved by
gentle traction on the spinous processes. Mild flexion of the
neck helped to maintain the reduction. As the neck was
extended there was a tendency for the laminae to reinvaginate.
Transverse wiring of the two involved spinous processes
was undertaken with tension towards the left-sided
lateral masses to maintain the position of the reduced
Adequate decompression was confirmed on a postoperative
CT scan (Figs 3a and 3b).

Tuesday, April 15, 2008

How to Calculate Frequency, Duration & Amplitude in EEG?

Bill Byrum writes about how to analyse and evaluate EEG inorder to calculate the frequency, duration etc., in the following article that appeared in the latest ASET newsletter.

Calculating Frequency, Duration, Amplitude, and Voltage Using a Legend
By Bill Byrum, MBA, R. EEG/EP T., CNIM

In this article I want to review with you
how simple it is to use a Legend. You will
need a measurement ruler graduated into
one mm segments. It would also be handy
to have a calculator that can be set to divide
to 3 decimal places. If you perform division
by hand, please be sure to carry the results
to 3 decimal places when calculating
waveform duration.
I strongly recommend whenever you
are doing calculation utilizing a Legend
that you use a referential montage and the
reference is not contaminated with EEG
activity. This is because in a bipolar
montage the waveforms are the result of
two inputs active with EEG activity. The
same can be said of a referential montage if
the reference is contaminated. For complete article, click the linked title?.

Wednesday, February 20, 2008

Degenerative Disc Disease- in a Illustrative way?

This picture illustrates the various conditions of the spine.
*****Another beautiful illustration about disc disease is presented in an interactive video at the Spine-Health.com. What is degenerative disc disease, how to make it simple to understand using illustration: here it is!

Sunday, February 17, 2008


  • Neuromonitoring1 ......is the only place on the internet or offline on any books where you will find list of companies that provide Neuromonitoring in America, it is not clear at this moment how many countries health care system applies this approach (there is no data on it, but I am sure there are only handful of nations like USA, Canada, UK, Sweden, Singapore so far known to employ or have companies doing this service, among them the most widely established neuromonitoring practices occur in US.

  • This list is by far the comprehensive, though it does not reflect one hundred percent of companies in US but certainly most of them with a webaddress and well known names are listed here.
A list of all these neuromonitoring companies are documented at the bottom of this blog under separate topic: Neuromonitoring Companies!!.
You will be able to get more details of those companies such as name brand, directors, office staff, company goals, operating areas and schedules etc., along with the link to each company at the very bottom of this blog under title Neuromonitoring Companies and Centers.
Two of the latest addition are Synapse neuromonitoring and Argos Neuromonitoring, the list will be updated periodically.

Neuromonitoring News!

Biotronics-a neuromonitoring company based in Ann-Arbor acquired another company :American Neuromonitoring of Farmington Hills. Here is the story......
Deal positions Biotronics for growth
"This is historically a very fragmented industry. ... Only in the last few years have (companies) begun to build to serving 20, 40 and, in our case, hundreds of clinicians in the field. Once you get yourself in a larger scale, you're able to provide a better price point to hospitals." - Gene Balzer, Biotronics chief executive officer.
By TINA REEDThe Ann Arbor News
As the practice of monitoring patients' nerve functions during spinal surgeries grows in popularity, an Ann Arbor-based company said it's aggressively trying to grow itself to make the practice more accessible to U.S. hospitals.
Biotronic NeuroNetwork recently acquired American Neuromonitoring of Farmington Hills in a move it hopes will position itself for future acquisitions and increase its monitoring expertise, said Gene Balzer, Biotronics chief executive officer.

Wednesday, January 30, 2008

How Much Risk Surgery Posses & What Neuromonitoring can Do?

Michael Dinkel et al., writes about the possible risks and outcomes of patients with disability in various surgery, and how neuromonitoring can help prevent such risks by identifying and localizing the risks in time?.

Intraoperative Neurophysiologic Monitoring
Michael Dinkel, M.D.
Department of Anaesthesiology Frankenwaldklinik
Ulrich Beese, M.D.
Department of Anaesthesiology University of Erlangen-Nuremberg
Michael Messner, M.D.
Department of Anaesthesiology University of Erlangen-Nuremberg

Michael Dinkel, Ulrich Beese, Michael Messner: Intraoperative Neurophysiologic Monitoring .
The Internet Journal of Neuromonitoring. 2001 . Volume 2 Number 2.

The rate of permanent recurrent laryngeal nerve paresis after thyroidectomy for instance comes up to 9%. Almost 40% of patients with acute dissection of the thoracoabdominal aorta suffer from paraplegia after aneurysm repair. Despite a wake-up test 0.7 to 1.6% are paraplegic after corrective procedures for scoliosis. After cardiac procedures with extracorporal circulation there is a 1 to 3% incidence of severe neurologic deficits and an incidence of cognitive deficits running up to 80%. Finally the stroke rate after carotid endarterectomy comes to 7% in well documented series [2, 3 , 4 ,5,7].
Further Reading: click the above topic linked.....!

Cardiovascular Surgery (like Cardiopulmanory bypass-CPB) & Neuromonitoring!

The following article demonstrates that neuromonitoring is very useful in cardiovascular surgeries, especially in patients with cerebrovascular diseases.

Intraoperative neuromonitoring in cardiac surgical patients with severe cerebrovascular disease
Alexander Kulik, MD, Rosendo A. Rodriguez, MD PhD, Howard J. Nathan, MD and Marc Ruel, MD MPH
University of Ottawa, Ottawa, Canada, E-mail: akulik@ottawaheart.ca

To the Editor:
Patients with severe cerebrovascular disease are at a high risk of neurologic complications during cardiac surgery, as a result of cerebral embolization or hypoperfusion during cardiopulmonary bypass (CPB). Intraoperative neuromonitoring, including transcranial Doppler ultrasound (TCD) and electroencephalography (EEG), may be particularly useful in patients with cerebrovascular disease.1 We hereby present two cases that illustrate the use of intraoperative neuromonitoring during cardiac surgery in patients with severe cerebrovascular disease.

Monday, January 14, 2008

Auditory "Brain stem Implant Electrode"- Frequency Tuning?

How important it is to fine tune the frequency specificity in the ventral cochlear nucleus and central inferior collicular neurons, the following research work published in the Oct 2007 issue of "Journal of Neurophysiology" used multichannel microelectrodes to map the frequency specfic patterns of activity in VCN and Inferior colliculus neurons.

Mohit N. Shivdasani1,2,3, Stefan J. Mauger1,2,3, Graeme D. Rathbone1,3 and Antonio G. Paolini1,2

Submitted 7 June 2007; accepted in final form 6 October 2007

Multichannel techniques were used to assess the frequency specificity of activation in the central nucleus of the inferior colliculus (CIC) produced by electrical stimulation of localized regions within the ventral cochlear nucleus (VCN). Data were recorded in response to pure tones from 141 and 193 multiunit clusters in the rat VCN and the CIC, respectively. Of 141 VCN sites, 126 were individually stimulated while recording responses in the CIC.....................

Sunday, January 13, 2008

Hearing Loss, what is Trigeminal Nerve doing instead of VIII Nerve?

Dorsal cochlear nucleus responses to somatosensory stimulation are enhanced after noise-induced hearing loss
S. E. Shore1,2,3
1Department of Otolaryngology, Kresge Hearing Research Institute
2Department of Molecular and Integrative Physiology and
3Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI 48109, USA,
S. Koehler1,3
1Department of Otolaryngology, Kresge Hearing Research Institute
3Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI 48109, USA,
M. Oldakowski1
1Department of Otolaryngology, Kresge Hearing Research Institute,
L. F. Hughes4
4Southern Illinois University School of Medicine, Department of Surgery/Otolaryngology, Springfield, IL, USA and
S. Syed1
1Department of Otolaryngology, Kresge Hearing Research Institute

The above article published in the latest issue of "European Journal of Neuroscience, discusses issues on hearing loss and possible involvement of trigeminal nerve?

Hearing loss due to VIII nerve damage or loss of synaptic connectivity of VIII nerve in the cochlear nucleus is a common degenerative changes observed in models of noise damage, similar degeneration of terminals also reported in cases of hearing loss in humans. However, the above article discusses the possiblity of the involement of "Trigeminal Nerve" as a compensatory response to the loss of VIII nerve connections following noise induced hearing loss in animal models. How much of this compensatory response is due to hearing loss or changes in VIII nerve connectivity is not clear, however, it is interesting to note how the neighbouring cranial nerve respond.

The authors observe the following changes in responses to trigeminal stimulation: The guinea pigs with noise-induced hearing loss had significantly lower thresholds, shorter latencies and durations, and increased amplitudes of response to trigeminal stimulation than normal animals. Noise-damaged animals also showed a greater proportion of inhibitory and a smaller proportion of excitatory responses compared with normal. Authors also argue that there is increased inhibitory responses and increased activity of somatosensory response, prompting them to conclude a role of somatosensory inputs in noise induced hearing loss? is yet to be clarified by extensive studies!.

Here is a Science Daily which is jumbing into conclusions of the following kind?.
'Ringing In The Ears' May Be Caused By Overactive Nerves, Acupuncture May Help, Study Suggests
ScienceDaily (Jan. 10, 2008) — Do your ears ring after a loud concert? Nerves that sense touch in your face and neck may be behind the racket in your brain, University of Michigan researchers say.
Note: the above image is from Science Daily.

Saturday, January 12, 2008

Scoliosis & More

The following article on Scoliosis provide a comprehensive look at what is scoliosis and related surgical interventions. Though, hard to explain the causes for scolisosis, efforts to understand this disease provided us more knowledge. Intraoperative neuromonitoring is extensively used in scoliosis correction surgical procedures.

Scoliosis and Proprioception
Robert Schleip
Published in Rolf Lines, Vol. 28, No.4 (Fall 2000)
Most types of scoliosis are classified as ‘idiopathic scoliosis’ which means that the reasons for this type of rotational deformity of the spine are yet unknown. Nevertheless there are all kinds of assumptions, beliefs and anectdotal reports available in the alternative health community concerning the main causes and driving factors.........................

Central Nervous System Processing in Idiopathic Scoliosis
By Jerry Larson, M.A.
Diplomate, American Board of Neurophysiological Monitoring

"The clinical manifestations of idiopathic scoliosis are well known, yet its causes remain unclear. Several factors have been proposed, including abnormal structural elements of the spine, dysfunctional spinal musculature, genetic factors, alterations of collagen metabolism, and abnormalities of the central nervous system. The most promising investigations appear to implicate the central nervous system, especially those areas involved with postural equilibrium. Spinal cord reflexes play an integral role in the maintenance of posture. These complex polysynaptic segmental reflexes are regulated by a variety of descending suprasegmental systems, by peripheral afferent impulses and within the spinal ....................

Tuesday, December 18, 2007

IONM the Gold Standard of Patient Safety? By David J.Anschel, M.D

David J. Anschel, M.D.
Contributing Editor of MedCompare,

David J. Anschel writes about the developments in "Itraoperative Neurophysiological Monitoring and its medical usage:

IONM has become the gold standard for ensuring patient safety while undergoing operations which place the central or peripheral nervous system at risk. Technological advancements within the last few years have allowed monitoring techniques to evolve. The above robust systems are representative of the best that modern medicine has to offer. Allowing neurologists and surgeons to work together to provide better patient outcomes during more complicated procedures in close proximity to vital neurological tissues.

Tuesday, November 6, 2007

Spinal Cord Injury & the debilitating condition!

Why neuroregeneration research, stem cells and its research are important to this world?.
Just watch this video, put your few min aside to see this spinal cord injury and its impact on Mike's life...!?

Friday, October 26, 2007

SAFETY IN THE OR: By Association of Peri Operative Registered Nurses, ALAMEDA county #0501

The Peri-Operative registered Nurses of Alameda country chapter #0501 has this fabulous informative site about what and what not to do in the OR, OR safety and policies. Though it was written for vendors (the suppliers and tech's), it is a great informative sources for anyone in the OR, the neurophysiolgosits and neuromonitoring crew's may find this very useful and informative, I did so. Thanks to the AORN for such a useful resources of knowledge in OR.
Vendor Policy - AORN of Alameda County
VendorsIn The Operating Room

Following completion of the self-directed learning module, the Vendor will be able to:
1. Classify various areas within the surgical suite, (e.g., restricted, semirestricted and unrestricted).
2. Describe proper surgical attire.
3. Describe proper handwashing technique and its importance.
4. Compare and contrast the communicability of HIV, HAV and HBV.
5. Describe steps to follow during a fire in the operating room.
6. Describe basic procedure during electrical outage.
7. Name plans for prevention of tuberculosis exposure.
Aseptic Technique
Aseptic technique is essential in all operating rooms. It should be considered the "law of the land". If breached, the consequences can be far-reaching and potentially devastating to the patient and the reputation of the hospital involved. The patient is particularly at risk for invasion of exogenous bacterial infections because the most significant protective barrier (the skin) is interrupted during surgery. Therefore, this is one of the most important sections in this module.

For the full site and details of the safety policy, read at:
the above images are obtained from the article:
Making the Operating Room a Safer Place
Michael Garvin, MHA11/01/2002
Making the Operating Room a Safer Place
By Michael Garvin, MHA

Remifentenil Reduces Patient Movement during Neurosurgery?

Doctors Guide is a very informative website on various fields of medicine and related subjects, mainly aimed to serve the doctors and information seekers in the allied health field and general public. http://www.docguide.com. It is freely accessible, if you want to personalize, you have to register and it is free.

The following article is relevant and interesting to neurophysiologists who do intraoperative neuromonitoring, also for anesthesiologists and the neurosurgeons who are concerned about patient movement during surgical procedure. In the recent annual meeting of the "American Soceity of Anesthesiologists the following work on Remifentanil was presented. Arushi Sinha, PhD writes about a presentation on how remifentanil can reduce patient movement during neurosurgery.

New Approaches for Reducing Patient Movement During Neurosurgery:
Presented at ASA
By Arushi Sinha, PhDSAN FRANCISO, CA -- October 23, 2007 --
Remifentanil reduces the risk of movement in the absence of muscle relaxants among patients undergoing elective craniotomy, researchers reported here at the Annual Meeting of the American Society of Anesthesiologists (ASA).In the case of neuroanaesthesia surgeries, muscle relaxants may not be indicated, particularly if intraoperative monitoring of motor evoked potentials or electromyography are involved. Alternative agents, such as remifentanil and propofol, may be used in such settings according to recent research.Marco Maurtua, MD, Assistant Professor, Department of Anesthesiology, Cleveland Clinic Foundation, Cleveland, Ohio, United States, and his colleagues designed a study to characterise the role of remifentanil in reducing movement associated with neurosurgical stimuli and to examine the incidence of bradycardia and hypotension in elective craniotomy patients.

[Presentation title: Remifentanil Prevents Movement During Neurosurgery in the Absence of Neuromuscular Blockade. Abstract A1481]

Tuesday, October 16, 2007

Microsfot Chairman Bill Gate's-Where is his Next Niche?

Bill Gates, Chairman of Microsoft corporation is next aiming to revolutionize the health industry with the internet and information technology.

The following commentery of Bill Gates implicate that he is already into this area, knowing his next venture is a niche of billions to come?. Whether it is money or revolutionizing concept, the medical field does need to have to incorporate the technology to enable us to understand the patient's health status better which might lead to a comprehensive way of approaching the patient's condition for better treatment. Immmmmmm.............his mouth is where the money is?.

Health Care Needs an Internet Revolution
By BILL GATESOctober 5, 2007; Page A17

We live in an era that has seen our knowledge of medical science and treatment expand at a speed that is without precedent in human history. Today we can cure illnesses that used to be untreatable and prevent diseases that once seemed inevitable. We expect to live longer and remain active and productive as we get older. Ongoing progress in genetics and our understanding of the human genome puts us on the cusp of even more dramatic advances in the years ahead.

Monday, October 15, 2007

Some Stats about CNIM Exam

CNIM Written Exam 2003-2006
One of the following must be met and verified for candidates
to be eligible to take the CNIM Exam:

Health care credential plus documentation of 100 cases monitored
Bachelor’s degree plus documentation of 100 cases monitored
68% passed on their first attempt. The pass rate for repeaters was 46%.
39% had another health care credential. Their pass rate was 50%.
61% of candidates had a bachelor’s degree or higher and a 61% pass rate.
Some of the candidates with bachelor’s or advanced degrees, also documented they had another health care credential.
Procedures Performed in the OR Totals
Totals Percentage
Spinal Nerve EMG 911 83%
Motor Pathway 783 71%
Intraop Scalp EEG 719 65%
BAEP 661 60%
Cranial Nerve EMG 619 56%
Cortical mapping 337 31%
ECOG 197 18%
VEP 139 13%

41% of candidates stated CNIM was a Job Requirement. This was the most common reason stated for taking the exam. The second most common response was Professional Advancement (34%) and the third reason selected was Personal Goal (18%).